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Abstract 

Kirsh, D., Foundations of AI: the big issues, Artificial Intelligence 47 (1991) 3-30. 

The objective of research in the foundations of AI is to explore such basic questions as: 
What is a theory in AI? What are the most abstract assumptions underlying the competing 
visions of intelligence? What are the basic arguments for and against each assumption? In 
this essay I discuss five foundational issues: (1) Core AI is the study of conceptualization 
and should begin with knowledge level theories. (2) Cognition can be studied as a 
disembodied process without solving the symbol grounding problem. (3) Cognition is nicely 
described in propositional terms. (4) We can study cognition separately from learning. (5) 
There is a single architecture underlying virtually all cognition. I explain what each of these 
implies and present arguments from both outside and inside AI why each has been seen as 
right or wrong. 

1. Introduction 

In AI, to date, there has been little discussion, and even less agreement, on 
methodology: What is a theory in AI? An architecture? An account of 
knowledge? Can a theory be tested by studying performance in abstract, 
simulated environments, or is it necessary to hook up implementations to 
actual visual input and actual motor output? Is there one level of analysis or a 
small set of problems which ought to be pursued first? For instance, should we 
try to identify the knowledge necessary for a skill before we concern ourselves 
with issues of representation and control? Is complexity theory relevant to the 
central problems of the field? Indeed, what are the central problems? 

The objective of research in the foundations of AI is to address some of 

* Support for this work has been provided in part by the Army Institute for Research in 
Management, Information and Communication Systems contract number DAKFll-88-C-0045. 

0004-3702/91/$03.50 © 1991 - -  Elsevier Science Publishers B.V. 



4 D. Kirsh 

these basic questions of method, theory and orientation. It is to self-conscious- 
ly reappraise what AI is all about. 

The pursuit of AI does not occur in isolation• Fields such as philosophy, 
linguistics, psychophysics and theoretical computer science have exercised a 
historical influence over the field and today there is as much dialogue as ever, 
particularly with the new field of cognitive science. One consequence of 
dialogue is that criticisms of positions held in one discipline frequently apply to 
positions held in other disciplines. 

In this first essay, my objective is to bring together a variety of these 
arguments both for and against the dominant research programs of AI. 

It is impossible, of course, to explore carefully all of these arguments in a 
single paper. The majority, in any event, are discussed in the papers in this 
volume, and it is not my intent to repeat them here. It may be of use, though, 
to stand back and consider several of the most abstract assumptions underlying 
the competing visions of intelligence. These assumptions--whether explicitly 
named by theorists or not--identify issues which have become focal points of 
debate and serve as dividing lines of positions. 

Of these, five stand out as particularly fundamental: 

• Pre-eminence o f  knowledge and conceptualization: Intelligence that 
transcends insect-level intelligence requires declarative knowledge and 

• • 1 some form of reasoning-like computation--call this cognition. Core AI is 
the study of the conceptualizations of the world presupposed and used by 
intelligent systems during cognition. 

• Disembodiment: Cognition and the knowledge it presupposes can be 
studied largely in abstraction from the details of perception and motor 
control. 

• Kinematics o f  cognition are language-like: It is possible to describe the 
trajectory of knowledge states or informational states created during 
cognition using a vocabulary very much like English or some regimented 
logico-mathematicai version of English. 

• Learning can be added later: The kinematics of cognition and the domain 
knowledge needed for cognition can be studied separately from the study 
of concept learning, psychological development, and evolutionary change. 

• Uniform architecture: There is a single architecture underlying virtually 
all cognition. 

Different research programs are based, more or less, on an admixture of 
these assumptions plus corollaries. 

By cognition I do not mean to take a stand on what the proper subject matter of cognitive 
science is. The term is meant to refer to computational processes that resemble both reasoning in a 
classical sense and computational processes that are more "peripheral" than reasoning, such as 
language recognition and object identification, where the representations are not about the entities 
and relations we have common sense terms for, but which may still usefully be construed as rules 
operating on representations. 
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Logicism [15, 32] as typified by formal theorists of the commonsense world, 
formal theorists of language and formal theorists of belief [17, 24], presupposes 
almost all of these assumptions. Logicism, as we know it today, is predicated 
on the pre-eminence of reasoning-like processes and conceptualization, the 
legitimacy of disembodied analysis, on interpreting rational kinematics as 
propositional, and the possibility of separating thought and learning. It remains 
neutral on the uniformity of the underlying architecture. 

Other research progams make a virtue of denying one or more of these 
assumptions. Soar, [30, 35] for instance, differs from logicism in according 
learning a vital role in the basic theory and in assuming that all of cognition can 
be explained as processes occurring in a single uniform architecture. Rational 
kinematics in Soar are virtually propositional but differ slightly in containing 
control markers--preferences--to bias transitions. In other respects, Soar 
shares with logicism the assumption that reasoning-like processes and con- 
ceptualization are central, and that it is methodologically acceptable to treat 
central processes in abstraction from perceptual and motor processes. 

Connectionists, [27, 38] by contrast, deny that reasoning-like processes are 
pre-eminent in cognition, that core AI is the study of the concepts underpin- 
ning domain understanding, and that rational kinematics is language-like. Yet 
like Soar, connectionists emphasize the centrality of learning in the study of 
cognition, and like logicists they remain agnostic about the uniformity of the 
underlying architecture. They are divided on the assumption of disem- 
bodiment. 

Moboticists [3] take the most extreme stance and deny reasoning, con- 
ceptualization, rational kinematics, disembodiment, uniformity of architecture 
and the separability of knowledge and learning (more precisely evolution). Part 
of what is attractive in the mobotics approach is precisely its radicalness. 

Similar profiles can be offered for Lenat and Feigenbaum's position [23], 
Minsky's society of mind theory [28], Schank's anti-formalist approach [40, 41] 
and Hewitt and Gasser's account [12, 14] of much of distributed AI research. 

These five issues by no means exhaust the foundational issues posed by the 
various approaches. But each does, in my opinion, lie at the center of a cluster 
of deep questions. 

In what follows I will explore arguments for and against each of these 
assumptions. I will explain what each of them implies and why they have been 
seen as right or wrong. 

2. Are knowledge and conceptualization at the heart of AI? 

Here is one answer to the question: what is a theory in AI? 

A theory in AI is a specification of the knowledge underpinning a 
cognitive skill. 
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A cognitive skill is the information-based control mechanism regulating per- 
formance in some domain. It is meant to cover the gamut of information- 
sensitive activities such as problem solving, language use, decision making, 
routine activity, perception and some elements of motor control. 

In accepting the priority of knowledge level theories, one is not committed 
to supposing that knowledge is explicitly encoded declaratively and deployed in 
explicitly inferential processes, although frequently knowledge will be. One's 
commitment is that knowledge and conceptualization lie at the heart of AI: 
that a major goal of the field is to discover the basic knowledge units of 
cognition (of intelligent skills). 

What are these knowledge units? In the case of qualitative theories of the 
commonsense world, and in the case of Lenat's cYc project [21, 23], these 
basic knowledge units are the conceptual units of consensus real i ty-- the  core 
concepts underpinning "the millions of things that we all know and that we 
assume everyone else knows" [21, p. 4]. Not surprisingly, these concepts are 
often familiar ideas with familiar names--though sometimes they will be 
theoretical ideas, having a technical meaning internal to the theory. For 
instance, in cYc, in addition to terms for tables, salt, Africa, and numbers-- 
obvious elements of consensual reality--there are technical terms such as 
temporal subabstraction, temporal projectability, partition, change predicate 
which have no simple correlate in English, and which are included as abstract 
elements of consensual reality because of the difficulty of constructing an 
adequate account without them. 

In the case of linguistics and higher vision these basic knowledge units tend 
more generally to be about theoretical entities. Only occasionally will there be 
pre-existing terms in English for them. Thus, noun phrase, sphere, pyramid 
and other shapes are commonsense concepts having familiar English names, 
but governing domain, animate movements, causal launchings 2 and most shape 
representations are, for most people, novel ideas that are not part of common 
parlance. The basic knowledge units of cognition--the conceptualizations 
underpinning cognitive skills--may range, then, from the familiar to the exotic 
and theoretical. 

The basic idea that knowledge and conceptualization lie at the heart of AI 
stems from the seductive view that cognition is inference. Intelligent skills, an 
old truism of AI runs, are composed of two parts: a declarative knowledge 
base and an inference engine. 

The inference engine is relatively uncomplicated; it is a domain-independent 
program that takes as input a set of statements about the current situation plus 
a fragment of the declarative knowledge base, it produces as output a stream of 

2 It is widely argued in the developmental  literature that one of the earliest and visually most  
robust  cues for distinguishing animate  creatures like dogs and snakes  from non-animate  objects like 
toy dogs, and cars, which may also move,  are cues about  body part trajectories, and original 
causation [25]. 
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inferred declaratives culminating in the case of decision making and routine 
activity, in directives for appropriate action. 

In contrast to the inference engine, the knowledge base is domain-specific 
and is as complicated as a cognitive skill requires. Domain knowledge is what 
distinguishes the ability to troubleshoot a circuit from the ability to understand 
the meaning of a sentence. Both require knowledge but of different domains. 
It follows that the heart of the AI problem is to discover what an agent knows 
about the world which permits success. This idea, in one form or another, has 
been endorsed by logicists, by Lenat and Feigenbaum [23], Chomsky [6], 
Montague [29], and with variations by Schank [41], and Newell and Simon 
[32]. 

The qualification in one form or another is significant. As mentioned, a 
commitment to theorizing about knowledge and knowledge units is not in itself 
a commitment to large amounts of on-line logical reasoning or explicit repre- 
sentation of domain knowledge. It is well known that not all skills that require 
intelligent control require an explicit knowledge base. So it is a further thesis 
that declarative knowledge and logical inference are actually deployed in most 
cognitive skills. In such cases we still may say that cognition is inference, but 
we no longer expect to find explicit inference rules or even complete trajec- 
tories of inferential steps. In the source code of cognition we would find 
instructions for inferential processes throughout. But knowledge can be com- 
piled into procedures or designed into control systems which have no distinct 
inference engines. So often our account of cognition is more of the form "The 
system is acting as i f  it were in fe r r ing . . . " .  

Knowledge compilation One question of considerable interest among theor- 
ists who accept the centrality of knowledge and the virtue of knowledge level 
theories, is "How far can this knowledge compilation go?" 

According to Nilsson there are severe limits on this compilation. Overt 
declaratives have special virtues. 

The most versatile intelligent machines will represent much of their 
knowledge about their environment declaratively . . .  [A declara- 
tive can] be used by the machine even for purposes unforeseen by 
the machine's designer, it [can] more easily be modified than could 
knowledge embodied in programs, and it facilitate[s] communica- 
tion between machine and other machines and humans. [33] 

For Nilsson, the theory of what is known is a good approximation of what is 
actually represented declaratively. He suggests that some reactions to situa- 
tions and some useful inferences may be compiled. But storage and indexing 
costs militate against compiling knowledge overmuch. Real flexibility requires 
explicit declarative representation of knowledge. No doubt, it is an empirical 
question just how much of a cognitive skill can be compiled. But as long as a 
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system uses some explicit declaratives, the apparatus of declarative representa- 
tion must be in place, making it possible, when time permits, to control action 
through run time inference. 

Rosenschein et al. [37] see the inflexibility of knowledge compilation as far 
less constraining. On their view, a significant range of tasks connected with 
adaptive response to the environment can be compiled. To determine the 
appropriate set of reactions to build into a machine, a designer performs the 
relevant knowledge level logical reasoning at compile time so that the results 
will be available at run time. Again, it is an empirical matter how many 
cognitive skills can be completely automatized in this fashion. But the research 
program of situated automata is to push the envelope as far as possible. 

A similar line of thought applies to the work of Chomsky and Montague. 
When they claim to be offering a theory about the knowledge deployed in 
parsing and speech production it does not follow they require on-line infer- 
ence. By offering their theories in the format of "here's the knowledge base 
use the obvious inference engine" they establish the effectiveness of their 
knowledge specification: it is a condition on their theory that when conjoined 
with the obvious inference engine it should generate all and only syntactic 
strings (or some specified fragment of that set). That is why their theories are 
called generative. But to date no one has offered a satisfactory account of how 
the theory is to be efficiently implemented. Parsing may involve considerable 
inference, but equally it may consist of highly automated retrieval processes 
where structures or fragments of structures previously found acceptable are 
recognized. To be sure, some theorists say that recognition is itself a type of 
inference: that recognizing a string of words as an NP involves inference. 
Hence even parsing construed as constraint satisfaction or as schema retrieval 
(instantiation) and so forth, is itself inferential at bottom. But this is not the 
dominant view. Whatever the answer, though, there are no a priori grounds for 
assuming that statements of linguistic principle are encoded explicitly in 
declaratives and operated on by explicit inference rules. 

Whether knowledge be explicit or compiled, the view that cognition is 
inference and that theorizing at the knowledge level is at least the starting place 
of scientific AI is endorsed by a large fragment of the community. 

Opposition In stark contrast is the position held by Rod Brooks. According 
to Brooks [3] a theory in AI is not an account of the knowledge units of 
cognition. Most tasks that seem to involve considerable world knowledge may 
yet be achievable without appeal to declaratives, to concepts, or to basic 
knowledge units, even at compile time. Knowledge level theories, he argues, 
too often chase fictions. If AI's overarching goal is to understand intelligent 
control of action, then if it turns out to be true, as Brooks believes it will, that 
most intelligent behaviour can be produced by a system of carefully tuned 
control systems interconnected in a simple but often ad hoc manner, then why 
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study knowledge? A methodology more like experimental engineering is what 
is required. 

If Brooks is right, intelligent control systems can be designed before a 
designer has an articulated conceptualization of the task environment. More- 
over, the system itself can succeed without operating on a conceptualization in 
any interesting sense. New behaviours can be grown onto older behaviours in 
an evolutionary fashion that makes otiose the task of conceptualizing the 
world. The result is a system that, for a large class of tasks, might match the 
versatility of action achievable with declaratives, yet it never calls on the type 
of capacities we associate with having knowledge of a conceptualization and 
symbolic representation of basic world elements. 

Whatever our belief about the viability of Brooks' position he has succeeded 
in exposing an important foundational question: Why assume intelligence 
requires concepts? If the AI community has largely ignored this problem it is 
not simply because it is a presupposition of the view that cognition is inference. 
It is also because the problem of designing intelligent systems has never been 
consciously formulated as one of discovering concepts in a psychological sense. 
In AI there is no marked difference between assuming a system to have a 
symbol in a declarative and assuming it to have a concept. The worry about 
what it is to have a concept is seldom articulated. Hence skepticism about 
concepts and conceptualization has been kept down. 

2.1. Are concepts really necessary for most intelligence? 

Evidence that the notion of concept is understudied in AI is easy to find. 
When Nilsson, for instance, unambiguously states that "The most important 
part of the 'AI problem' involves inventing an appropriate conceptualization" 
[33, p. 10], it would be natural to expect him to provide an account of what it is 
for a system to have a concept. But in fact by conceptualization he does not 
mean the concepts a system has about the world. Rather he means the designer 
of a machine's best guess about a "mathematical structure consisting of 
objects, functions, and relations" close enough to the real world for the 
machine to achieve its purposes. Admittedly, for Nilsson, the designer builds 
his conceptualization into a system by creating "linguistic terms to denote his 
invented objects, functions and relations", putting these terms in sentences in 
the predicate calculus, and giving "the machine declarative knowledge about 
the world by storing these sentences in the machine's memory". So in certain 
cases talk of conceptualization is short hand for talk of the concepts a machine 
has. But it is important to mark the logical distinction between: 

(1) the conceptualization of a task the designer has; 
(2) the conceptual system the machine embodying the skill has; 
(3) the way the conceptual system is encoded. 

The difference lies in the deeply philosophical question of what it is to grasp 
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a concept. We cannot just assume that a machine which has a structure in 
memory that corresponds in name to a structure in the designer's conceptuali- 
zation is sufficient for grasping the concept. The structure must play a role in a 
network of abilities; it must confer on the agent certain causal powers [1]. 
Some of these powers involve reasoning: being able to use the structure 
appropriately in deduction, induction and perhaps abduction. But other powers 
involve perception and action--hooking up the structure via causal mechanisms 
to the outside world. 

Logicists are not unmindful of the need to explain what it is for a system to 
understand a proposition, or to grasp the concepts which constitute proposi- 
tions. But the party line is that this job can be pursued independently from 
the designer's main task of inventing conceptualizations. The two activities-- 
inventing conceptualizations and grounding concepts--are modular. Hence the 
grounding issue has not historically been treated as posing a challenge that 
might overturn the logicist program. 

A similar belief in modularizing the theorist's job is shared by Lenat and 
Feigenbaum. They see the paramount task of AI to be to discover the 
conceptual knowledge underpinning cognitive skills and consensus reality. This 
leaves open the question of what exactly grasping a basic conceptual or 
knowledge unit of consensus reality amounts to. There certainly is a story of 
grounding to be told, but creatures with different perceptual-motor endow- 
ments will each require its own story. So why not regard the problem of 
conceptualization to be independent from the problem of grounding concepts? 

This assumption of modularization--of disembodiment--is the core concern 
of Brian Smith [42] in his reply to Lenat and Feigenbaum. It pertains, as well, 
to worries Birnbaum expresses about model theoretic semantics [1]. Both 
Birnbaum and Smith emphasize that if knowing a concept, or if having 
knowledge about a particular conceptualization requires a machine to have a 
large background of behavioural, perceptual and even reasoning skills, then 
the greater part of the AI task may reside in understanding how concepts can 
refer, or how they can be used in reasoning, perceiving, acting, rather than in 
just identifying those concepts or stating their axiomatic relations. 

Accordingly, it is time to explore what the logicist's conception of a concept 
amounts to. Only then can we intelligently consider whether it is fair to say 
that logicists and Lenat and Feigenbaum--by assuming they can provide a 
machine with symbols that are not grounded and so not truly grasped--are 
omitting an absolutely major part of the AI problem. 

2.1.1. The logicist concept of concept 
A concept, on anyone's view, is a modular component of knowledge. If we 

say John knows the pen is on the desk, and we mean this to imply that John 
grasps the fact of there being a particular pen on a particular desk, we assume 
that he has distinct concepts for pen, desk and on. We assume this because we 
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believe that John must know what it is for something to be a pen, a desk, and 
something to be on something else. That is, we assume he has the referential 
apparatus to think about pens, desks, and being on. At a minimum, this 
implies having the capacity to substitute other appropriate concepts for x and y 
in (On pen y), (On x desk), and R in (R pen desk). If John could not just as 
easily understand what it is for a pen to be on something other than a desk, or 
a desk to have something other than a pen on it, he would not have enough 
understanding of pen, desk, and on to be able to display the minimal 
knowledge that pens and desks are distinct entities with enough causal in- 
dividuality to appear separately, and in different combinations. 

Now the basic premiss driving the logicist program, as well as Lenat and 
Feigenbaum's search for the underpinnings of consensus reality, is that to 
understand an agent's knowledge we must discover the structured system of 
concepts underpinning its skills. This structure can be discovered without 
explaining all that is involved in having the referential apparatus presupposed 
by concepts because it shows up in a number of purely disembodied, rational 
processes. If concepts and conceptual schemes seem to play enough of an 
explanatory role at the disembodied level to be seen as robust entities, then we 
can study their structure without concern for their grounding. 

What then are these disembodied processes which can be explained so nicely 
by disembodied concepts? In the end we may decide that these do not 
sufficiently ground concepts. But it is important to note their variety. For too 
often arguments about grounding do not adequately attend to the range of 
phenomena explained by assuming modular concepts. 

Inferential abilities First, and most obviously, is the capacity of an agent to 
draw inferences. For instance, given the premises that the pen is on the desk, 
that the pen is matte black, then a knowledgeable agent ought to be able to 
infer that the matte black pen is on the desk. It often happens that actual 
agents will not bother to draw this inference. But it is hard for us to imagine 
that they might have a grasp of what pens are etc, and not be able to draw it. 
Inferences are permissive not obligatory. Thus, as long as it makes sense to 
view agents to be sometimes drawing inferences about a domain, or performing 
reason-like operations, it makes sense to suppose they have a network of 
concepts which structures their knowledge. 3 

3 The much  discussed attribute of  systematicity which Fodor  and Pylyshyn cite in [11] as essential 
to symbolic reasoning and antithetical to the spirit of  much  connectionist  work to date, is a version 
of this generality constraint on concepts.  A few years earlier, Gareth  Evans  put  the mat ter  like this: 

If the subject  can be credited with the thought  that a is F, then he must  have 
conceptual  resources for entertaining the thought  that a is G, for every property of 
being G of which he has a conception.  We thus see the thought  that  a is F as lying at the 
intersection of two series of  thoughts:  on the one hand,  the series of  thoughts  that  a is 
F, b is F, c is F , . . . ,  and,  on the other  hand,  the series of  thoughts  that a is F, a is G, a 
is H . . . . .  [8, p. 104, footnote 22]. 
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It must be appreciated, however,  that when we say that John has the 
concepts of pen and desk we do not mean that John is able to draw inferences 
about pens and desks in only a few contexts. He must display his grasp of the 
terms extensively, otherwise we cannot be sure that he means desk by "desk"  
rather than wooden object, for instance. For this reason, if we attribute to a 
machine a grasp of a single concept we are obliged to attribute it a grasp of a 
whole system of concepts to structure its understanding. Otherwise its inferen- 
tial abilities would be too spotty, displaying too many gaps to justify our 
attribution of genuine understanding. Experience shows that to prevent ridicul- 
ous displays of irrationality it is necessary to postulate an elaborate tissue of 
underlying conceptualizations and factual knowledge. The broader  this knowl- 
edge base the more robust the understanding, and more reasonable the action. 

This is one very compelling reason for supposing that intelligence can be 
studied from a disembodied perspective. 

Inferential breadth is only one of the rational capacities that is explained by 
assuming intelligent agents have concepts. Further capacities include identifica- 
tion and visual attention, learning, knowledge decay and portability of 

knowledge. 

Knowledge and perception Kant once said, sensation without conception is 
blind. What he meant is that I do not know what I am seeing, if I have no 
concept to categorize my experience. Much of our experience is of a world 
populated with particular objects, events and processes. Our idea of these 
things may be abstractions---constructions from something more primitive, or 
fictional systematizers of experience. But if so, they are certainly robust 
abstractions, for they let us predict, retrodict,  explain and plan events in the 

world. 
It is hard to imagine how we could identify entities if we did not have 

concepts. The reason this is hard, I suspect, is because object identification is 
such an active process. Perception, it is now widely accepted, is not a passive 
system. It is a method for systematically gathering evidence about the environ- 
ment. We can think of it as an oracle offering answers to questions about the 
external world. Not direct answers, but partial answers, perceptual answers, 
that serve as evidence for or against certain perceptual conjectures. One job of 
the perceptual system is to ask the right questions. Our eyes jump about an 
image looking for clues of identity; then shortly thereafter they search for 
confirmation of conjectures. The same holds for different modalities. Our eyes 
often confirm or disconfirm what our ears first detect. The notions of evidence, 
confirmation and falsification, however, are defined as relations between 
statements or propositions. Concepts are essential to perception then because 
perception provides evidence for conjectures about the world. It follows that 
the output of perception must be sufficiently evidence-l ike--that  is, proposi- 
t i o n a l - t o  be assigned a conceptual structure. How else could we see physical 
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facts, such as the pen being on the desk as the structured facts--  
Ithe penl-lis onl-lthe deskl? 

Growth of knowledge A third feature of rational intelligence--learning---can 
also be partly explained if we attribute to a system a set of disembodied 
concepts. From the logicist perspective, domain knowledge is much like a 
theory, it is a system of axioms relating basic concepts. Some axioms are 
empirical, others are definitional. Learning, on this account, is construed as 
movement along a trajectory of theories. It is conceptual advance. This 
approach brings us no closer to understanding the principles of learning, but 
we have at least defined what these principles are: principles of conceptual 
advance. A theory of intelligence which did not mention concepts would have 
to explain learning as a change in capacities behaviourally or functionally 
classified. Since two creatures with slightly different physical attributes would 
not have identical capacities, behaviourally defined, the two could not be said 
to learn identically. Yet from a more abstract perspective, what we are 
interested in is their knowledge of the domain, the two might indeed seem to 
learn the same way. Without concepts and conceptual knowledge it is not clear 
this similarity could be discovered, let alone be explained. But again the 
relevant notion of concept is not one that requires our knowing how it is 
grounded. Disembodied concepts serve well enough. 

Decay of knowledge In a similar fashion, if a system has a network of 
disembodied concepts we can often notice and then later explain regularities in 
how its rational performance degrades. It is an empirical fact that knowledge 
and skill sometimes decay in existing reasoning systems, such as humans or 
animals, in a regular manner. Often it does not. Alzheimer's disease may bring 
about a loss of functionality that is sporadic or at times random. But often, 
when a system decays, deficits which at first seem to be unsystematic, can 
eventually be seen to follow a pattern, once we know the structure of the larger 
system from which they emerge. This is obviously desirable if we are cognitive 
scientists and wish to explain deficits and predict their etiology; but it is equally 
desirable 
interpret 
to locate 
decay at 
evidence 

if we are designers trying to determine why a design is faulty. If we 
a system as having a network of concepts we are in a better position 
where its bugs are. But the fact that we can track and can explain 
the conceptual level without explaining grounding offers us further 
of the robustness of disembodied concepts. 

Portability of knowledge There is yet a fifth phenomenon of rationality which 
the postulation of disembodied concepts can help explain. If knowledge 
consists in compositions of concepts--that  is, propositions--we have an expla- 
nation of why, in principle, any piece of knowledge in one microtheory can be 
combined with knowledge drawn from another microtheory. They can combine 
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because they are structured in a similar fashion out of similar types of 
elements. At the object level, this explains how it is possible for a cognizer to 
receive generally useful information in one context, say astronomy, and end up 
using it in another, say calendar making. At the metalevel, it explains how, as 
designers, we can build on knowledge in different domains, thereby simplifying 
our overall account of the knowledge a system requires. Many of the decisions 
we make rely on information drawn from disparate domains. Knowledge which 
accrues in one domain can be useful in making decisions in another. This is a 
fact which Nilsson rightly emphasizes in his condition on portability as a 
hallmark of commonsense knowledge. Compositionality would explain por- 
tability .4 

Given the virtues of concepts it is hard to imagine anyone seriously doubting 
that concepts--whose grounding we have yet to explain--lie at the heart of 
intelligence. Explanations of a system's conceptual system are clearly not the 
whole story of AI, but can it be reasonably denied that they are a cleanly 
modular major chapter? 

I now turn to these reasonable doubts. 

3. Are cognitive skills disembodied? 

I have been presenting a justification for the view that, in the main, 
intelligence can be fruitfully studied on the assumption that the problems and 
tasks facing intelligent agents can be formally specified, and so pursued 
abstractly at the knowledge or conceptual level. For analytic purposes we can 
ask questions about cognitive skills using symbolic characterizations of the 
environment as input and symbolic characterizations of motor activity as 
output. Concerns about how conceptual knowledge is grounded in perceptual- 
motor skills can be addressed separately. These questions can be bracketed 
because what differentiates cognitive skills is not so much the perceptual-motor 
parameters of a task but the knowledge of the task domain which directs action 
in that domain. This is the methodological assumption of disembodiment. 
What are the arguments against it? 

In his attack on core AI, Brooks identifies three assumptions related to 
disembodiment which, in his opinion, dangerously bias the way cognitive skills 
are studied: 

4 To be sure,  this c o m m o n  language of concepts does not  apply to every domain of knowledge. 
Microtheories about syntax and early vision, arguably are about  domain  elements  not  found in 
other  microtheories.  To the degree that  the conceptual  e lements  we attribute to syntax and early 
vision are inaccessible to other  inferential processes we are justified in being skeptical of their 
robustness  as concepts in the full blooded sense we mean  when we talk of  publicly shared concepts 
like chairs and tables. This concern that we should reserve the term concept for post-peripheral  
processes is discussed by Cussins [7]. 
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• The output of vision is conceptualized and so the interface between 
perception and "central cognition" is clean and neatly characterizable in 
the language of predicate calculus, or some other language with terms 
denoting objects and terms denoting properties. 

• Whenever we exercise our intelligence we call on a central representation 
of the world state where some substantial fraction of the world state is 
represented and regularly updated perceptually or by inference. 

• When we seem to be pursuing our tasks in an organzied fashion our 
actions have been planned in advance by envisioning outcomes and 
choosing a sequence that best achieves the agent's goals. 

The error in each of these assumptions, Brooks contends, is to suppose that 
the real world is somehow simple enough, sufficiently decomposable into 
concept-sized bites, that we can represent it, in real time, in all the detailed 
respects that might matter to achieving our goals. It is not. Even if we had 
enough concepts to cover its relevant aspects we would never be able to 
compute an updated world model in real time. Moreover, we don't need to. 
Real success in a causally dense world is achieved by tuning the perceptual 
system to action-relevant changes. 

To take an example from J.J. Gibson, an earlier theorist who held similar 
views, if a creature's goals are to avoid obstacles on its path to a target, it is not 
necessary for it to constantly judge its distance from obstacles, update a world 
model with itself at the origin, and recalculate a trajectory given velocity 
projections. It can instead exploit the invariant relation between its current 
velocity and instantaneous time to contact obstacles in order to determine a 
new trajectory directly. It adapts its actions to changes in time to contact. If the 
environment is perceived in terms of actions that are afforded rather than in 
terms of objects and relations, the otherwise computationally intensive task is 
drastically simplified. 

Now this is nothing short of a Ptolemaic revolution. If the world is always 
sensed from a perspective which views the environment as a space of possibili- 
ties for action, then every time an agent performs an action which changes the 
action potentials which the world affords it, it changes the world as it perceives 
it. In the last example, this occurs because as the agent changes its instanta- 
neous speed and direction it may perceive significant changes in environmental 
affordances despite being in almost the same spatial relations to objects in the 
environment. Even slight actions can change the way a creature perceives the 
world. If these changes in perception regularly simplify the problem of 
attaining goals, then traditional accounts of the environment as a static 
structure composed of objects, relations and functions, may completely mis- 
state the actual computational problems faced by creatures acting in the world. 
The real problem must be defined relative to the world-for-the-agent. The 
world-for-the-agent changes despite the world-in-itself remaining constant. 
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To take another example of how action and perception are intertwined, and 
so must be considered when stating the computational problems facing agents, 
consider the problem of grasp planning. Traditionally the problem is defined as 
follows: Given a target object,  an initial configuration of hand joints and free 
space between hand and target, find a trajectory of joint changes that results in 
a stable grasp. At one time it was thought that to solve this problem it was 
necessary to compute the 3D shape of the target, the final configuration of 
joints, and the trajectory of joint changes between initial and final configura- 
t ions--a  substantial amount  of computation by anyone's measure. Yet this is 
not the problem if we allow compliance. Instead we simply need locate a rough 
center of mass of the target, send the palm of the hand to that point with the 
instruction to close on contact,  and rely on the hand to comply with the object. 
The problem is elegantly simplified. No longer must we know the shape of the 
object,  the mapping relation between 3D shape and joint configuration, or the 
constraints on joint closure. The original definition of the grasp planning 
problem was a mis-statement. It led us to believe that certain subproblems and 
certain elements of knowledge would be required, when in fact they are not. 
Compliance changes everything. It alters the way the world should be inter- 

preted. 
The point is that the possibility of complying with shapes restructures the 

world. A creature with a compliant hand confronts a different world than a 
creature without. Accordingly, a knowledge level account of grasping which 
did not accommodate the simplifications due to compliance would be false. It 
would be working with an incorrect set of assumptions about the manipulator. 

By analogy, one cardinal idea of the embodied approach to cognition, is that 
the hardware of the body- - in  particular, the details of the sensori-motor 
system--when taken in conjuction with an environment and goals shape the 
kinds of problems facing an agent. These problems in turn shape the cognitive 
skills agents have. Consequently,  to specify these skills correctly it is necessary 
to pay close attention to the agent's interactions with its envi ronment - - to  the 
actions it does and can do at any point. Disembodied approaches do not 
interpret the environment of action in this dynamic manner,  and so inevitably 
give rise to false problems and false solutions. They tend to define problems in 
terms of task environments specified in the abstract perspective independent 
language of objects and relations. 5 

Now this argument,  it seems to me, is sound. But how far does it go? It 
serves as a reminder to knowledge level theorists that they may easily 
misspecify a cognitive skill, and that to reliably theorize at the knowledge level 
one should often have a model of the agent's sensori-motor capacities. But it is 

5 Newell and Simon in their characterization of task environment emphasize that a given physical 
environment becomes a task environment only relative to a goal or task, and a set of actions. But 
one assumption they retain is that actions are basically STRIPS-like: they add or delete facts but do 
not engender wholesale revision of perspective. 
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an empirical question just how often hardware biases the definition of a 
cognitive problem. A priori one would expect a continuum of problems from 
the most situated--where the cognitive task cannot be correctly defined 
without a careful analysis of the possible compliances and possible agent 
environment invariants--to highly abstract problems, such as word problems, 
number problems, puzzles and so forth, where the task is essentially abstract, 
and its implementation in the world is largely irrelevant to performance. 6 

Ultimately, Brooks' rejection of disembodied AI is an empirical challenge: 
for a large class of problems facing an acting creature the only reliable method 
of discovering how they can succeed, and hence what their true cognitive skills 
are, is to study them in situ. 

Frequently this is the way of foundational questions. One theorist argues 
that many of the assumptions underpinning the prevailing methodology are 
false. He then proposes a new methodology and looks for empirical support. 

But occasionally it is possible to offer, in addition to empirical support, a set 
of purely philosophical arguments against a methodology. 

3.1. Philosophical objections to disembodied A I  

At the top level we may distinguish two philosophical objections: first, that 
knowledge level accounts which leave out a theory of the body are too 
incomplete to serve the purpose for which they were proposed. Second, that 
axiomatic knowledge accounts fail to capture all the knowledge an agent has 
about a domain. Let us consider each in turn. 

3.1.1. Why we need a theory of  the body 
The adequacy of a theory, whether in physics or AI, depends on the purpose 

it is meant to serve. It is possible to identify three rather different purposes AI 
theorists have in mind when they postulate a formal theory of the common- 
sense world. An axiomatic theory T of domain D is: 

(1) adequate for robotics if it can be used by an acting perceiving machine to 
achieve its goals when operating in D; 

(2) adequate for a disembodied rational planner if it entails all and only the 
intuitive truths of D as expressed in the language of the user of the 
planner; 

(3) adequate for cognitive science if it effectively captures the knowledge of 
D which actual agents have. 

6 Clearly there are limits to how deviantly an abstract task may be implemented without effecting 
performance. Isomorphs of tic-tac-toe and the Tower of Hanoi are notoriously more difficult to 
solve than the standard problems. But the success in solving a problem often depends on finding its 
abstract structure---on understanding the constraints and options. Particular implementations or 
encodings of problems may make discovering this structure especially hard. But whenever success 
crucially depends on being mindful of that structure, knowledge level accounts of the problem are 
particularly appropriate. 



18 D. K i t h  

The philosophical arguments I will now present are meant to show that a 
formal theory of D, unless accompanied by a theory about the sensori-motor 
capacities of the creature using the theory, will fail no matter  which purpose a 
theorist has in mind. Theories of conceptualizations alone are inadequate,  they 
require theories of embodiment.  

Inadequacy for robotics According to Nilsson, the touchstone of adequacy of 
a logicist theory is that it marks the necessary domain distinctions and makes 
the necessary domain predictions for an acting perceiving machine to achieve 
its goals. Theoretical adequacy is a function of four variables: D: the actual 
subject-independent properties of a domain; P: the creature's perceptual 
capacities; A: the creature's action repertoire; and G: the creature's goals. In 
principle a change in any one of these can affect the theoretical adequacy of an 
axiomatization. For changes in perceptual abilities, no less than changes in 
action abilities or goals may render domain distinctions worthless, invisible to a 
creature. 

If axioms are adequate only relative to (D P A G) then formal theories are 
strictly speaking untestable without an account of (D P A G). We can never 
know whether a given axiom set captures the distinctions and relations which a 
particular robot will need for coping with D. We cannot just assume that T is 
adequate if it satisfies our own intuitions of the useful distinctions inherent in a 
domain. The intuitions we ourselves have about the domain will be relative to 
our own action repertoire,  perceptual capacities, and goals. Nor will appeal to 
model theory help. Model theoretic interpretations only establish consistency. 
They say nothing about the appropriateness, truth or utility of axiom sets for a 
given creature. 

Moreover ,  this need to explicitly state A, P, and G is not restricted to robots 
or creatures having substantially different perceptual-motor capacities to our 
own. There is always the danger that between any two humans there are 
substantive differences about  the intuitively useful distinctions inherent in a 
domain. The chemist, for instance, who wishes to axiomatize the knowledge a 
robot needs to cope with the many liquids it may encounter,  has by dint of 
study refined his observational capacities to the point where he or she can 
notice theoretical properties of the liquid which remain invisible to the rest of 
us. She will use in her axiomatizations primitive terms that she believes are 
observational. For most of us they are not. We require axiomatic connections 
to tie those terms to more directly observational ones. As a result, there is in 
all probability a continuum of formal theories of the commonsense world 
ranging from ones understandable by novices to those understandable only by 
experts. Without an account of the observational capacities presupposed by a 
theory,  however, it is an open question just which level of expertise a given T 
represents. 

It may be objected that an account of the observational capacities pre- 
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supposed by a theory is not actually part of the theory but of the metatheory of 
use- - the  theory that explains how to apply the theory. But this difference is in 
name alone. The domain knowledge that is required to tie a predicate to the 
observational conditions that are relevant to it is itself substantial. If a novice is 
to use the expert 's  theory he will have to know how to make all things 
considered judgements about whether a given phenomenon is an A-type event 
or B-type event. Similarly if the expert is to use the novice's theory he must 
likewise consult the novice's theory to decide the best way to collapse 
observational distinctions he notices. In either case, it is arbitrary where we say 
these world linking axioms are to be found. They are part and partial of 
domain knowledge. But they form the basis for a theory of embodiment.  

Inadequacy for disembodied rational planners Despite the generality of the 
argument above it is hard to reject the seductive image of an omniscient 
angel- -a  disembodied intellect who by definition is unable to see or ac t - -who 
nonetheless is fully knowledgeable of the properties of a domain and is able to 
draw inferences, make predictions and offer explanations in response to 

questions put to it. 
The flaw in this image of a disembodied rational planner, once again, is to be 

found in the assumption that we can make sense of the angel's theoretical 
language without knowing how it would be hooked up to a body with sensors 
and effectors. Without some idea of what a creature would perceive the best 
we can do to identify the meaning it assigns to terms in its theory is to adopt a 
model theoretic stance and assume the creature operates with a consistent 
theory. In that case, the semantic content of a theory will be exhausted by the 
set of models satisfying it. Naturally, we would like to be able to single out one 
model,  or one model family, as the intended models- - the  interpretation the 
angel has in mind when thinking about that theory. But there is no principle 
within model theory which justifies singling out one model as the intended 
model. Without some further ground for supposing the angel has one particular 
interpretation in mind we must acknowledge that the reference of the expres- 

sions in its theories are inscrutable. 
It is not a weakness of model theory that it fails to state what a user of a 

language thinks his expressions are about. Model theory is a theory of validity, 
a theory of logical consequence. It states conditions under which an axiom set 
is consistent. It doesn' t  purport  to be a theory of intentionality or a theory of 
meaning. This becomes important  because unless all models are isomorphic to 
the intended model there will be possible interpretations that are so ridiculous 
given what we know that the axiom set is obviously empirically false. We know 
it doesn't  correctly describe the entities and relations of the domain in 

question. 
The way out of the model-theoretic straightjacket is once again by means of 

translation axioms linking terms in the axiom set to terms in our ordinary 
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language. Thus if the angel uses a term such as "suppor ts"  as in "if you move a 

block supporting another  block, the supported block moves"  we assume that 
the meaning the angel has in mind for support is the same as that which we 

would have in the comparable  English sentence. But now a problem arises. For 

unless we specify the meaning of these terms in English we cannot be confident 

the angel 's theory is empirically adequate.  The reason we must go this extra 

yard is that there are still too many possible interpretations of the terms in the 
axiom set. For instance, does the axiom "if  you move a block supporting 

another,  the supported block moves"  seem correct? Perhaps. But consider 

cases where the upper  block is resting on several lower blocks each supporting 

a corner of the upper  block. Any single lower block can now be removed 
without disturbing the upper.  Hence the axiom fails. 

Were these cases intended? Exactly what range of cases did the angel have in 
mind? Without an account of intentionality, an account which explains what 

the angel would be disposed to recognize as a natural case and what as a 
deviant case, we know too little about the meaning of the angel 's axioms to put 

them to use. Translation into English only shifts the burden because we still 
need to know what an English speaker  would be disposed to recognize as a 

natural case and what as a deviant case. Without a theory of embodiment  these 
questions are not meaningful.  

Inadequacy for cognitive science I have been arguing that axiomatic accounts 
of common sense domains are incomplete for both robots and angels unless 

they include axioms specifying sensori-motor capacities, dispositions, and 
possibly goals. For the purposes of cognitive science, however,  we may add yet 

another  requirement  to this list: that the predicates appearing in the axioms be 

extendable to new contexts in roughly the way the agents being modelled 
extend their predicates. We cannot say we have successfully captured the 

knowledge a given agent has about  a domain unless we understand the 
concepts (or recognitional dispositions) it uses. 

For instance, suppose an axiomatization of our knowledge of the blocks 
world fails to accommodate  our judgements  about  novel blocks world cases. 

This will occur, for example,  if we try to use our axioms of cubic blocks worlds 
to apply to blocks worlds containing pyramids.  When our cubic blocks world 

axiomatization generates false predictions of this broader  domain,  shall we say 
the axiomatization fails to capture the single conceptualization of both worlds 
we operate  with? Or  shall we rather say that we must operate  with more than 
one set of blocks world concep t ions- -one  apt for cubic blocks, another  for 
pyramidal,  and so forth? One major  school of thought maintains that it is the 
nature of human concepts that they be extendable to new domains without 
wholesale overhauling [19, 20]. Indeed that virtually all concepts, it is sugges- 
ted, have this extensibility property.  

Yet if extensibility is a feature of our conceptualizations then no axiomatiza- 
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tion of our knowledge will be psychologically correct unless it also includes a 
set of axioms or principles for determining how we will extend our concepts to 
new domains. Axiomatizations without these principles will be too static, 
regularly giving rise to false predictions. On the other hand, extensibility 
dispositions cannot be stated without making reference to our sensori-motor 
dispositions and goals. Since these cannot be given without a theory of the 
agent's sense organs etc, axiomatizations in cognitive science must include a 

theory of embodiment. 

3.1.2. Essential indexicality 
The second set of arguments to show that an axiomatic theory of com- 

monsense domains fail to capture all the knowledge the agents have about 
those domains turns on the rather severe assumptions implicit in model- 
theoretic interpretations of axioms that it be possible to state the intended 
interpretation of an axiom set in the language of sets and properties of 
objective spatial temporal regions. If it can be shown that systems often think 
about the world indexically, in an egocentric fashion, which cannot be 
adequately interpreted in terms of properties of objective space time regions, 
then there is some knowledge that an axiomatic theory fails to capture. 

For example, my knowledge that my eyeglasses are over there, on my right, 
is not properly captured by describing my relation to a set of objective 
spatio-temporal models or geometric structures, because over there is not a 
standard function from words to worlds. If I am working with a data glove and 
manipulating objects on a display screen, over there means somewhere in data 
glove space. Similarly, if I am looking through a telescope, or I am wearing 
vision distorting glasses, what I mean when I say over there is not something 
context-independent; it very much matters on my action and perception space. 
What my knowledge of over there consists in is a set of dispositions to orient 
myself, to take certain actions which presuppose the location of the object 
relative to the type of actions I might perform. These dispositions cannot be 
described in terms of the public world of space and time, however, because 
they may have nothing to do with that shared world. 7 

Now if microtheories are meant to explain what we know about a domain 
that permits us to perform rational actions in that domain--for  instance, if the 
microtheory of liquids is to partly explain why I open the tops of bottles, and 
upend them to extract their liquid contents-- then that microtheory pre- 
supposes that we have the concept of upending. Yet if upending is a term that 
is meaningful egocentrically--and it must be for I may upend a bottle in data 
glove space--then our liquid microtheory does not capture our conceptual 
knowledge correctly. Many of the concepts we have are grounded in our 
egocentric understanding of our world of action and perception. Logicists tend 

7 The position I am cursorily describing derives from Gareth Evans in lecture and in [8]. 



22 D. Kirsh 

to treat  all concepts as designating entities in the public domain. ~ It is possible 

to introduce new constructs, such as perspectives, or situations to capture the 

agent 's  point of view on a space time region. But this still leaves unexplained 

the agent 's  perspective on virtual spaces which can be explained only by 

describing the agent 's  dispositions to behave in certain ways. Hence there are 
some things that an agent can know about a domain- - such  as where it is in a 
domain- -which  cannot be captured by standard axiomatic accounts. 9 

4. Is cognition rational kinematics? 

I have been arguing that there are grave problems with the methodological  
assumption that cognitive skills can be studied in abstraction from the sensing 

and motor  apparatus of the bodies that incorporate them. Both empirical and 
philosophical arguments can be presented to show that the body shows 

through. This does not vitiate the program of knowledge level theorists, but it 
does raise doubts about  the probabili ty of correctly modelling all cognitive 

skills on the knowledge-base/ inference-engine model.  

A further assumption related to disembodied AI  is that we can use logic or 

English to track the trajectory of informational states a system creates as it 

processes a cognitive task. That  is, either the predicate calculus or English can 
serve as a useful semantics for tracking the type of computat ion that goes on in 
cognition. They are helpful metalanguages.  

From the logicist's point of view, when an agent computes  its next behaviour 
it creates a trajectory of informational states that are about  the objects,  

functions and relations designated in the designer 's  conceptualization of the 

environment .  This language is, of course, a logical language. Hence the 

transitions between these informational states can be described as rational 

transitions or inferences in that logical language. If English is the semantic 
metalanguage,  then rational transitions between sentences will be less well- 

defined, but ought nonetheless to make sense as reasonable. 

There  are two defects with this approach.  First, that it is parochial: that in 

fact there are many types of computat ion which are not amenable  to charac- 
terization in a logical metalanguage,  but which still count as cognition. Second, 
because it is easy for a designer to mistake his own conceptualization for a 
machine 's  conceptualization there is a tendency to misinterpret  the machine 's  

informational trajectory,  often attributing to the machine a deeper  grasp of the 
world than is proper.  

For a brief account of the advantages of conceiving of the world as a public space, see my 
commentary on Rod Brooks [16]. 

9A third argument against model theoretic interpretations of knowledge is inconsistency. If there 
is an inconsistency in what I know about liquids, then there can be no models of this knowledge 
set. So I must know nothing at all. But of course I do know much about liquids, I just happen to be 
mistaken in one of my beliefs. Efforts to deal with such inconsistency exist in the literature [2]. 
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Argument 1. Consider the second objection first. As mentioned earlier, it is 
necessary to distinguish those cases where: 

(1) the designer uses concepts to describe the environment which the 
machine does not understand and perhaps could not; 

(2) the designer uses only those concepts which the machine grasps, but the 
two represent those concepts differently; 

(3) both designer and machine use the same concepts and encode them in 
the same way. 

The first two cases concern the appropriate metalanguage of design, the last 
the object language of processing. Our goal as scientists is to represent a 
creature's cognition as accurately as possible, both so we can verify what it is 
doing, hence debug it better, and so we can design it better from the outset. 

The trouble that regularly arises, though, is that the designer has a con- 
ceptualization of the task environment that is quite distinct from that of the 
system. There is always more than one way of specifying an ability, and more 
than one way of specifying an environment of action. Choice of a metalan- 
guage should be made on pragmatic grounds: which formalism most simplifies 
the designer's task? But lurking in the background is the worry that if the 
designer uses a metalanguage that invokes concepts the system simply does not 
or could not have, then he may propose mistaken designs which he later 
verifies as correct using the same incorrect metalanguage. 

For example, suppose we wish to design a procedure controlling a ma- 
nipulator able to draw a circle using a pair of compasses. In our conceptualiza- 
tion we talk of a locus of points equidistant from a third point. Does the system 
itself operate with that conceptualization? Does it have implicit concepts of 
locus, equidistance and points? 

Why does it matter? Well, suppose we now have the manipulator attempt to 
draw a circle on a crumpled piece of paper. The naive procedure will not 
produce a curve whose distance on the crumpled surface is equidistant. Its 
design works for fiat surfaces, not for arbitrary surfaces. Yet if a system did 
have concepts for equidistance, locus and points it ought to be adaptive enough 
to accommodate deformations in surface topology. To be sure such a machine 
would have to have some way of sensing topology. That by itself is not enough, 
though. It is its dispositions to behave in possible worlds that matters. This is 
shown by the old comment that whether I have the concept chordate (creature 
having a heart) or renate (creature having kidneys) cannot be determined by 
studying my normal behaviour alone [34]. In normal worlds, all chordates are 
renates. Only in counterfactual worlds--where it is possible to come across 
viable creatures with hearts but no kidneys---could we display our individuating 
dispositions. The upshot is that a designer cannot assume that his characteriza- 
tion of the informational trajectory of a creature is correct, unless he confirms 
certain claims about the creature's dispositions to behave in a range of further 
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contexts. Sometimes these contexts lie outside the narrow task he is building a 
cognitive skill for. 

None of the above establishes that English is inadequate. It just shows that it 
is easy to make false attributions of content. The criticism that logic and 
natural language are not adequate metalanguages arises as soon as we ask 
whether they are expressive enough to describe some of the bizarre concepts 
systems with funny dispositions will have. In principle, both logic and English 
are expressive enough to capture any comprehensible concept. But the result- 
ing characterization may be so long and confusing that it will be virtually 
incomprehensible. For instance, if we try to identify what I have been calling 

the implicit concepts of the compass controller we will be stymied. If the 
system could talk what would it say to the question: Can a circle be drawn in a 
space measured with a non-Euclidian metric? What nascent idea of equidis- 
tance does it have? Its inferences would be so idiosyncratic that finding an 
English sentence or reasonable axiomatic account would be out of the ques- 
tion. English and logic are the wrong metalanguages to characterize such 
informational states. 

What is needed is more in the spirit of a functional account of informational 
content [1]. Such semantics are usually ugly. For in stating the role an 
informational state plays in a system's dispositions to behave we characteristi- 
cally need to mention myriad other  states, since the contribution of a state is a 
function of other states as well. 

Accordingly, not all informational states are best viewed as akin to English 
sentences. If we want to understand the full range of cognitive skills-- 
especially those modular ones which are not directly hooked up to central 
inference--we will need to invoke some other  language for describing informa- 
tion content. Frequently the best way to track a computation is not as a 
rational trajectory in a logical language. 

Argument 2. The need for new languages to describe informational content 
has recently been re-iterated by certain connectionists who see in parallel 
distributing processing a different style of computation. Hewitt and Gasser 
have also emphasized a similar need for an alternative understanding of the 
computational processes occurring in distributed AI systems. It is old fashioned 
and parochial to hope for a logic-based denotational semantics for such 
systems. 

The PDP concern can be stated as follows: in PDP computation vectors of 
activation propagate through a partially connected network. According to 
Smolensky [41] it is constructive to describe the behaviour of the system as a 
path in tensor space. The problem of interpretation is to characterize the 
significant events on this path. It would be pleasing if we could say "now the 
network is extracting the information that p, now the information that q" ,  and 
so on, until the system delivers its answer. Unfortunately,  though, except for 
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input and output vectors--whose interpretation we specifically set-- the majori- 
ty of vectors are not interpretable as carrying information which can be easily 
stated in English or logic. There need be no one-one  mapping between 
significant events in the system's tensor space trajectory and its path in 
propositional space. Smolensky--whose argument this is--suggests that much 
of this intermediate processing is interpretable at the subconceptual level 
where the basic elements of meaning differ from those we have words for in 

English. '° 
In like manner, Hewitt and Gasser offer another argument for questioning 

whether we can track the information flowing through a complex system in 
propositional form. The question they ask is: How are we to understand the 
content of a message sent between two agents who are part of a much larger 
matrix of communicating agents. Superficially, each agent has its own limited 
perspective on the task. From agent-l 's  point of view, agent-2 is saying p, from 
agent-3's point of view, agent-2 is saying q. Is there a right answer? Is there a 
God's eye perspective that identifies the true content and gives the relativized 
perspective of each agent? If so, how is this relativized meaning to be 
determined? We will have to know not only whom the message is addressed to, 
but what the addressee is expecting, and what it can do with the message. 
Again, though, once we focus on the effects which messages have on a system 
we leave the simple world of denotational semantics and opt for functional 
semantics. Just how we characterize possible effects, however, is very different 
than giving a translation of the message in English. We will need a language for 
describing the behavioural dispositions of agents. 

Cognition as rational inference looks less universal once we leave the domain 
of familiar sequential processing and consider massively parallel architectures. 

5. Can cognition be studied separately from learning? 

In a pure top-down approach, we assume it is possible to state what a system 
knows without stating how it came to that knowledge. The two questions, 
competence and acquisition can be separated. Learning, on this view, is a 
switch that can be turned on or off. It is a box that takes an early conceptuali- 
zation and returns a more mature conceptualization. Thus learning and con- 

~o One  way of seeing the problem is to recognize that  in a simple feed-forward network a given 
hidden unit  can be correlated with a (possibly nested)  disjunction of conjunctions of probabilities 
of  input features.  A vector, therefore,  can be interpeted as a combinat ion of these. The result is a 
compound  that may make  very little sense to us. For instance,  it might correspond to a distribution 
over the entire feature set. Thus  a single node might be tuned  to respond to the weighted 
conjunction of features comprising the tip of  my nose,  my heel,  plus the luminesence of my hands,  
or the weighted conjunction of . . . .  Moreover ,  if we do not  believe that the semantics of  networks 
is correlational but rather  functional we will prefer  to interpret the meaning  of a node to be its 
contribution (in conjunction with its superior  nodes) to the capacity to classify. 
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ceptualization are sufficiently distinct that the two can be studied separately. 

Indeed, learning is often understood as the mechanism for generating a 
trajectory of conceptualizations. This is clearly the belief of logic theorists and 
developmental psychologists who maintain that what an agent knows at a given 
stage of development is a theory, not fundamentally different in spirit than a 
scientific theory, about the domain [4]. 

There are several problems with this view. First, it assumes we can charac- 
terize the instantaneous conceptualization of a system without having to study 
its various earlier conceptualizations. But what if we cannot elicit the system's 
conceptualization using the standard techniques? To determine what a compe- 
tent PDP system, for example, would know about its environment of action, it 
is necessary to train it until it satisfies some adequacy metric. We cannot say in 
advance what the system will know if it is perfectly competent  because there 
are very many paths to competence,  each of which potentially culminates in a 
different solution. Moreover  if the account of PDP offered above is correct it 
may be impossible to characterize the system's conceptualization in a logical 
language or in English. It is necessary to analyze its dispositions. But to do that 
one needs an actual implementation displaying the competence. Hence the 
only way to know what a PDP system will know if it is competent  is to build 
one and study it. A purely top-down stance, which asssumes that learning is 
irrelevant, is bound to fail in the case of PDP. 

A second argument against detaching knowledge and learning also focusses 
on the in practice unpredictable nature of the learning trajectory. In Soar it is 
frequently said that chunking is more than mere speedup [35]. The results of 
repeatedly chunking solutions to impasses has a nonlinear effect on per- 
formance. Once we have nonlinear effects, however, we cannot predict the 
evolution of a system short of running it. Thus in order to determine the steady 
state knowledge underpinning a skill we need to run Soar with its chunking 

11 module on. 

A final reason we cannot study what a system knows without studying how it 
acquires that knowledge is that a system may have been special design features 
that let it acquire knowledge. It is organized to self-modify. Hence we cannot 
predict what knowledge it may contain unless we know how it integrates new 
information with old. There are many ways to self-modify. 

For instance, according to Roger  Schank, much of the knowledge a system 
contains is lodged in its indexing scheme [41]. As systems grow in size they 
generally have to revise their indexing scheme. The results of this process of 
revision cannot be anticipated a priori unless we have a good idea of the earlier 
indexing schemes. The reason is that much of its knowledge is stored in cases. 
Case knowledge may be sensitive to the order  the cases were encountered.  

11 We can, of course, hand-simulate running the system and so predict its final states. But I take 
it this is not a significant difference from running Soar itself. 
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Consequently, we can never determine the knowledge a competent system has 
unless we know something of the cases it was exposed to and the order they 
were met. History counts. 

This emphasis on cases goes along with a view that much of reasoning 
involves noticing analogies to past experiences. A common corrolary to this 
position is that concepts are not context-free intensions; they have a certain 
open texture, making it possible to flexibly extend their use and to apply them 
to new situations in creative ways. An agent which understands a concept 
should be able to recognize and generate analogical extensions of its concepts 
to new contexts. 

Once we view concepts to be open textured, however, it becomes plausible 
to suppose that a concept's meaning is a function of history. It is easier to see 
an analogical extension of a word if it has already been extended in that 
direction before. But then, we can't say what an agent's concept of "container" 
is unless we know the variety of contexts it has seen the word in. If that is so, it 
is impossible to understand a creature's conceptualization in abstraction from 
its learning history. Much of cognition cannot be studied independently of 
learning. 

6. Is the architecture of cognition homogeneous? 

The final issue I will discuss is the claim made by Newell et al. that cognition 
is basically the product of running programs in a single architecture. According 
to Newell, too much of the research in AI and cognitive science aims at 
creating independent representational and control mechanisms for solving 
particular cognitive tasks. Each investigator has his or her preferred computa- 
tional models which, clever as they may be, rarely meet a further constraint 
that they be integratable into a unified account of cognition. For Newell 

Psychology has arrived at the possibility of unified theories of 
cognition--theories that gain their power by positing a single 
system of mechanisms that operate together to produce the full 
range of human cognition [30]. 

The idea that there might be a general theory of intelligence is not new. At 
an abstract level anyone who believes that domain knowledge plus inferential 
abilities are responsible for intelligent performance, at least in one sense, 
operates with a general theory of cognition. For, on that view, it is knowledge, 
ultimately, that is the critical element in cognition. 

But Newell's claim is more concrete: not only is knowledge the basis for 
intelligence; knowledge, he argues further, will be encoded in a Soar-like 
mechanism. This claim goes well beyond what most logicists would maintain. It 
is perfectly consistent with logicism that knowledge may be encoded, im- 
plemented or embedded in any of dozens of ways. A bare commitment to 
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specification of cognitive skills at the knowledge level is hardly grounds for 
expecting a small set of "underlying mechanisms, whose interactions and 
compositions provide the answers to all the questions we have--predictions, 
explanations, designs, controls" [30, p. 14] pertaining to the full range of 
cognitive performances. The Soar project, however, is predicated on this very 
possibility. The goal of the group is to test the very strong claim that 
underpinning problem solving, decision making, routine action, memory, 
learning, skill, even perception and motor behaviour, there is a single architec- 
ture "a single system [that] produces all aspects of behaviour . . .  Even if the 
mind has parts, modules, components, or whatever, they mesh t o g e t h e r . . . "  
and work in accordance with a small set of principles. 

It is not my intent to provide serious arguments for or against this position. I 
mention it largely because it is such a deep committment of the Soar research 
program and therefore an assumption that separates research orientations. The 
strongest support for it must surely be empirical, and it will become convincing 
only as the body of evidence builds up. There can be little doubt, though, that 
it is an assumption not universally shared. 

Minsky, for instance, in Society of Mind [28[, has argued that intelligence is 
the product of hundreds, probably thousands of specialized computational 
mechanisms he terms agents. There is no homogenous underlying architecture. 
In the society of mind theory, mental activity is the product of many agents of 
varying complexity interacting in hundreds of ways. The very purpose of the 
theory is to display the variety of mechanisms that are likely to be useful in a 
mind-like system, and to advocate the need for diversity. Evolution, Minsky, 
emphasizes is an opportunistic tinkerer likely to co-opt existing mechanisms in 
an ad hoc manner to create new functions meeting new needs. With such 
diversity and ad hoccery it would be surprising if most cognitive performances 
were the result of a few mechanisms comprising a principled architecture. 

Brooks in a similar manner sets out to recreate intelligent capacities by 
building layer upon layer of mechanism, each with hooks into lower layers to 
suppress or bias input and output. Again, no non-empirical arguments may be 
offered to convince skeptics of the correctness of this view. The best that has 
been offered is that the brain seems to have diverse mechanisms of behaviour 
control, so it is plausible that systems with comparable functionality will too. 

Again there is no quick way to justify the assumption of architecture 
homogeneity. More than any other foundational issue this is one for which 
non-empirical or philosophical arguments are misplaced. 

7. Conclusion 

I have presented five dimensions--five big issues--which theorists in AI, 
either tacitly or explicitly, take a stand on. Any selection of issues is bound to 
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have a personal element to them. In my case I have focussed most deeply on 
the challenges of embodiment. How reliable can theories of cognition be if 
they assume that systems can be studied abstractly, without serious concern for 
the mechanisms that ground a system's conceptualization in perception and 
action? But other more traditional issues are of equal interest. How central is 
the role which knowledge plays in cognitive skills? Can most of cognition be 
seen as inference? What part does learning or psychological development play 
in the study of reasoning and performance? Will a few mechanisms of control 
and representation suffice for general intelligence? None of the arguments 
presented here even begin to be decisive. Nor were they meant to be. Their 
function is to encourage informed debate of the paramount issues informing 
our field. 
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